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Measurements have been made concerning the fine structure of the turbulence 
in the part adjacent to the wall of the wall region of a plane turbulent boundary 
layer. The objective was to gain further information concerning the larger-scale 
disturbance mechanism which is mainly responsible for the generation of tur- 
bulence. Hot-wire anemomet.ry was used and information on the fine structure 
was obtained by differentiating and filtering the hot-wire signal. 

The distributions of the Kolmogorov microscale and of the -flatness and 
skewness factors of the axial fluctuating velocity u and its first and second 
derivative determined at two Reynolds numbers suggest the existence of Rey- 
nolds number similarity. In the region y+ < 15 the flatness and skewness factors 
of u increase with decreasing yf. At approximately y+ = 15 the flatness factor 
shows a minimum value, while the skewness factor becomes zero. This location 
agrees with that where the turbulence intensity u’ has a maximum value. In  
the outer part of the wall region (y+ > 100) the flatness and skewness factors 
approach values obtained in shear-free turbulence a t  the same turbulence 
Reynolds number. 

The fine structure of the turbulence is strongly associated with and dominated 
by the random, larger-scale, intermittent inrush-ejection cycle. In  the viscous 
sublayer both the fine structure, and the large-scale mechanism of the turbulence 
are influenced mainly by the inrush phase, while further out in the wall region 
(y+ > 40) they are influenced by both inrush and ejection. As a result, in the 
viscous sublayer the average burst periods of the high frequency turbulence 
components and their flatness factors (of &/at and of a2u/at2) attain values 
twice those in the outer part. 

The change in the mechanism of the fine structure with distance from the wall 
is clearly demonstrated by the spectra of non-negative variables, i.e. (au/at)z 
and (a2u/at2)2. The spectra agree with each other and decrease with increasing 
frequency, following a power law as predicted by Gurvich & Yaglom (1967). 
The power law applies to almost the whole frequency range, when the highest, 
viscous, frequency range is excluded. However, the exponent is different for 
the viscous sublayer and the outer part of the wall region. In  the buffer 
layer the spectra have two distinct power-law regions. In  the lower frequency 
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range the exponent is the same as that for the viscous sublayer, while in 
the higher frequency range it is the same as that  for the outer part of the wall 
region. 

1. Introduction 
During the last decade visual studies have stimulated further research on the 

mechanism of the turbulence in the wall region, specifically on the disturbance 
mechanism and the turbulence production process. Kline et al. (1967), Kim, 
Wine & Reynolds (1971) and Corino & Brodkey (1969) observed that the dis- 
turbance mechanism consisted substantially of inrushes of fluid with high axial 
momentum into low momentum fluid near the wall alternating with ejections 
of low momentum fluid outward from the wall. As shown by Kim et al. (1971), 
Grass (1971), Willmarth & Lu (1972) and Wallace, Eckelmann & Brodkey (1972), 
the energy production process is strongly associated with and dominated by this 
intermittent inrush-ejection cycle, and consequently by the larger-scale tur- 
bulence. 

It has long been known that locally in the wall region the turbulence energy 
production is almost of the same magnitude as the turbulence dissipation, 
which is mainly determined by the fine structure of the turbulence. As pointed 
out by Wallace et al. (1972), this turbulence dissipation process is also strongly 
related to  the random and intermittent inrush-ejection cycle, because the 
region of the inrush and ejection events appears t o  correspond t o  the region of 
high local shear rates and consequently to  high local dissipation of energy. 
Therefore, for a better understanding of the underlying disturbance mechanism, 
knowledge of the fine structure of the turbulence in the wall region is inevitably 
required. The present work is a n  effort to  gain further information through 
detailed measurements of the fine structure of the turbulence near the wall in 
a plane turbulent boundary layer with zero pressure gradient. The measurements 
have been confined mostly to the inner part of the wall region, namely to  

From measurements of the flatness factor of derivatives of the velocity fluc- 
tuations in grid-generated turbulence and in wake flows, Batchelor & Townsend 
(1949) first suggested that the fine structure of the turbulence tends to  be locally 
concentrated, intermittent in nature and randomly scattered through the fluid 
in a rather spotty way. This has been confirmed by, amongst others, recent 
experiments in grid-generated turbulence by Kuo & Corrsin (1971, 1972). The 
same result has been obtained by Sandborn (1959) in a turbulent boundary 
layer. Experiments in the atmospheric boundary layer have been made by Pond 
& Stewart (1965), Gurvich & Yaglom (1967), Gibson, Stegen & Williams (1970), 
Van Atta & Chen (1970), Stewart, Wilson & Burling (1970), Sheih, Tennekes & 
Lumley (1971) and Wyngaard & Cot6 (1971). The results of all these experiments 
not only confirmed the intermittent nature of the fine structure of turbulence, 
but also showed that this intermittency increases with increasing turbulence 
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Reynolds number Re, = u'hg/v, where A, is the dissipation length scale corres- 
ponding to the transverse two-point velocity correlation (Hinze 1959, p. 36). 

The degree of interinittency is closely related t o  the flatness factor of the 
,probability density of a fluctuating signal, an increase in the intermittency 
corresponding to an increase in the flatness factor. From their measurements in 

!grid-generated turbulence (12 < Re, < 830), Kuo & Corrsin (1971) obtained an 
empirical relation which shows the above increase of the flatness factor with 
Re,. They also showed that, for a fixed Re,, the flatness factor increased with 
decreasing characteristic length scale of the turbulence, i.e. with increasing 
wavenumber. 

Important progress in the theory of the fine structure of turbulence has been 
made by Kolmogorov (1962), Oboukhov (1962) and Yaglom (1966). In addition 
to the original Kolmogorov (1941) hypotheses of local isotropy and similarity, 
Kolmogorov (1962) and Oboukhov (1962) further assumed that the logarithm 
of 8,) the average energy dissipation rate in a volume of linear dimension r ,  has 
a normal probability distribution. They obtained modified expressions for 
velocity structure functions. Later Yaglom (1966) and Gurvich & Yaglom 
(1967) showed, under the assumption of a cascade process for the breakdown 
of bigger to smaller eddies, that at large Reynolds number any non-negative 
quantity a(x ,  t )  governed by the fine structure of turbulence [e.g. ( a u / a ~ ) ~ ]  has 
a lognormal probability distribution with the variance of In Gr given by 

(1) 
Here L is an integral length scale, A depends on the characteristics of the large- 
scale motion, while ,IL is a universal constant. From the structure function of the 
energy dissipation a one-dimensional spectrum of or of E ,  can be 

( 2 )  calculated : 

Here k is the wavenumber, while Yaglom's notation is used (see 53.5). 
Now Orszag (1970) showed that a lognormal probability distribution of .? 

leads to an inconsistency in the moments of various orders; they become in- 
determinate. However, for most of the values of the flatness factor (which is the 
fourth-order moment) obtained in the present investigation, this objection 
appears not to be serious (see Tennekes & Wyngaard 1972). 

In  accordance with the major objective, mentioned above, of the present 
experiments the distributions of characteristic length scales, flatness factors and 
skewness factors, and the variation of spectra of non-negative random variables 
with distance from the wall have been measured. We also wanted to clarify the 
fine structure of the turbulence in the wall region in the light of the above large- 
scale disturbance mechanism. And finally we wanted information concerning 
the degree of local isotropy of this fine structure. 

cln zr = A +pln(L/r). 

, q ) ( k )  = S ~ ( k ~ p - 1  cc kp-1. 

2. Experimental equipment and procedure 
The data reported here were taken in the turbulent boundary layer on a vertical 

Plexiglas wall placed at  the centre-line of a low-speed low-turbulence wind 
tunnel. It was a tunnel of closed-circuit type with a rectangular test section 
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FIGURE 1. Block diagrams: (a )  measurement of turbulence intensity and its first and second 
derivatives; (b)  measurement of flatness and skewness factors ; ( c )  spectrum analysis. 

0.9 x 0.7 m, a 10: 1 contraction and a turbulence level of about 0.03 % at a free- 
stream velocity of 13.5 m/s. The location of the transition to turbulent flow in 
the boundary layer was fixed by means of a tripping wire attached to the working 
surface about 3.38 m upstream of the test section. The longitudinal static- 
pressure gradient was adjusted to a negligibly small value by means of movable 
opposite walls. The data were obtained at the two free-stream velocities 4.10 
and 13-5 m/s. 

Only the longitudinal turbulent velocity component u was measured, with a 
single hot-wire anemometer set normal to the mean flow. The probe was made of 
jeweller’s broaches spaced 10 mm apart and only a short central part of the wire 
(platinum wire 2 ,um in diameter) was heated. The length of the heated part 
was 0.20 mm, which is equal to and three times the Kolmogorov microscale 
71 = (v3/e)4 a t  the free-stream velocities of 4.10 and 13.5 m/s respectively. From 
Wyngaard’s (1968) calculation based on Pao’s (1965) spectrum, this length of 
the heated part was short enough so that spectral response to the first derivative 
of the fluctuating velocity was not significantly reduced by a length effect. A 
DISA Type 55M electronic unit for constant-temperature operation of the hot- 
wire anemometer was used in conjunction with a linearizer with an adjustable 
exponent. The hot wire was operated with an overheat ratio of 0.40. The con- 
duction effect of the heated wire near the solid wall was sufficiently significant 
in the viscous sublayer to be taken into account, which was done using Wills’ 
(1962) method. 

Block diagrams of the electronic equipment used in this experiment are shown 
in figure 1. An ax. amplifier (flat frequency response ranging from 0-3 to 
40 000 Hz) was used to raise the linearized anemometer signal to a desired level 
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urn 43.0, S* e u* 
(m/s) (mm) (mm) (mm) H = S*/O Re, Re, +Cf (m/s) 
4- 1 42.2 6.5 4.59 1.42 11450 1244 0.0019 0.18 
13.5 39-7 6-8 4.75 1.43 35 500 4248 0.0014 0.50 

TABLE 1. Boundary-layer parameters for the experimental conditions 

and to eliminate any d.c. level. Since the noise level of the compensated ane- 
mometer output increases linearly with frequency, a Spencer-Kennedy Model 
300 filter was used to cut off the unwanted high frequency signal and noise. 

The fine-structure turbulence signal was obtained by electronic differentiation 
and using a band-pass filter. Differentiation circuits with time constants step- 
wise variable from 0.0632 to 2.083 x 10-3 s and with a 18 dbloctave cut-off a t  
the high frequency end were used to obtain the first and the second derivatives. 
A Briiel & Kjaer Type 1612 band-pass filter set was used to obtain band-pass 
signals with various mid-band frequencies f, and a relative bandwidth A f Ifm 
of 0.24. 

For the measurements of flatness and skewness factors, two multipliers and 
two integrators were used (figure 1 b) .  Calibration of the multipliers was made 
by feeding in a sine-wave signal. It was confirmed that tlie scaling factor 

of the multipliers was constant within an error of 3 %  over the frequency 
range from 10 to I0000 Hz and over the input level from 0.5 to 5 V. Since the 
multipliers have lower and higher limits of input level, the measured values of 
flatness and skewness factors changed with the input level, especially when the 
signal had a very large flatness factor. Following Kuo & Corrsin (1971), the 
values at the horizontal parts of the curves of measured flatness and skewness 
factors vs. input level were taken as ‘true’ values. 

3. Experimental results 
3.1. General flow speczlfication 

The data reported here were obtained at the two air velocities 4.10 and 13.5 m/s. 
Table 1 gives the various boundary-layer parameters corresponding to these 
two velocities. The values of the friction velocity u* were computed from the 
slope of the mean velocity profile near the wall, and obtained from both hot-wire 
anemometer and Pitot tube measurements. These values agree very well with 
those predicted by Ludwieg & Tillmann’s (1949) empirical relation. The dis- 
tributions of the mean velocity and the turbulence intensity are shown in 
figures 2 and 3, respectively. They are in fair agreement with those obtained in 
other investigations on flat-plate boundary layers and on pipe flows. 

9 F L M  67 
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FIGURE 2. Distribution of mean velocity. Re8: A, 11450; 0, 35500. - . * * - ,  Nikuradse 
(1933); --, Laufer (1954); -.  -, Patel (1965); - .. -, Schlichting (1968, p. 565). 
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FIGURE 3. Distribution of turbulence intensity. Res: A, 11 450; 0, 35500. ---, Laufer 
(1953), Re = 15300; -..-, Morrison & Kronauer (1969), Re = 17000; --, Eckelmann 
(1970), Re = 5600 and 82000; - - -, Grass (1971), Re = 6740. 
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3.2. Distribution of length scales 

If the assumption of approximate homogeneity may be made concerning the 
fine structure of the turbulence that is responsible for the viscous dissipation, 
the general expression for the mean value of the dissipation, i.e. 

can be reduced to (see, for example, Hinze 1959, p.166) 

The only possible effect of inhomogeneity on the calculation of B from (4) turns 
out to be an additional term va2>/ay2 in the present case of a plane fully deve- 
loped turbulent boundary layer. An estimate made from Laufer's (1954) data 
showed that the contribution of this term was less than a few per cent. 

Experimental evidence shows that, except close to the wall, a further sim- 
plification can be made by assuming local isotropy (see, for example, Klebanoff 
1955; Lawn 1971; Hinze 1973). The expression for E then takes on the well- 

Assuming Taylor's hypothesis of 'frozen' turbulence to be applicable to the 
fine structure, E has been determined by electronic differentiation of the hot- 
wire signal of u and by taking the mean-square value of the differentiated signal. 
From ( 5 )  the dissipation length scale A, is obtained. The Kolmogorov microscale 
7 is obtained from 

7 = (v3/E)4 = (15)-&Re,$ A,. (6) 

The distributions of Ag' = A,u*/v, r+ = yu*/v and Re, as functions of y f  
are shown in figure 4, for the two Reynolds numbers Re, = 11 450 and 35 500. 
There are some, but not marked, differences in the values for the two Reynolds 
numbers. Both A,+ and Re,  increase monotonically with distance from the wall 
only up to y f  E 10, and remain almost constant beyond this distance. 

Since, for reasons mentioned above, the evaluation of C according to ( 5 )  
cannot be correct close to the wall, the values of r,~+ in the region y+ < 10, say, 
must be considered with reserve. The same applies to the determination of Ag" 
and Re, from ( 5 ) .  

3.3. Flatness factor 

The flatness factor of a random variable e ( t )  with normalized probability density 
P(e) is defined by 

F(e) = ."/(2)2 = - m  ~ f m d e e 4 ~ ( e ) / [ ~ + m d e e z ~ ( e ) ] z .  - -m 

Since the fourth moment weights large values of e heavily, the flatness factor 
is a measure of the extent of the skirt of LY(e). Thus a large value of P is obtained 

9-2 
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FIGURE 4. Distributions of ReA, the non-dimensional dissipation length scale A: and the 

non-dimensional Kolmogorov microscale q + .  Red : A, 11 450; 0, 35500. 

if there is still a finite probability for large amplitudes of e .  A t  the same time 
P ( e )  then must be much more peaked than the P ( e )  of a signai with almost 
zero probability for a large amplitude. As Batchelor & Townsend (1949) pointed 
out, a peaked probability density with a long skirt means that the signal must 
show periods of relative silence, i.e. must show an intermittent character. Con- 
sequently a small value of the intermittency factor, defined as the fraction of time 
that turbulence occurs, yields a large value of the flatness factor. A large value of 
the flatness factor does not necessarily imply intermittency, however (Kuo &, 
Corrsin 1971). For a normal probability density the intermittency factor 
y = 3.0. On the assumption of such a probability density during periods of high 
activity Batchelor & Townsend (1949) suggested determining the value of the 
flatness factor from P = 3-0/y. 

The noise level of a compensated hot-wire signal increases linearly with 
frequency, while the energy spectrum of turbulence decreases rapidly with in- 
creasing frequency. Therefore, the signal-to-noise ratio is reduced at  high 
frequency. Differentiation accentuates the high frequency component, so it 
tends to reduce the signal-to-noise ratio. Since the noise has approximately a 
normal probability density, the flatness factor tends to level off to 3.0 with 
decreasing signal-to-noise ratio. Therefore, a low-pass filter is used to cut off 
the highest frequency. The measured flatness factor increases with increasing 
high cut-off frequency and tends to approach a constant value a t  about the 
Kolmogorov frequency ( fK = U/2777). At much higher cut-off frequencies, the 
signal-to-noise ratio decreases and the flatness factor levels off. This general 
tendency is the same as that suggested by Kuo & Corrsin (1971). 

Following these authors, the Kolmogorov frequency was chosen as the high 
cut-off frequency. The distributions across the inner part of the wall region of 
the flatness factor of u and of its first and second derivatives are shown in figure 5. 
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FIGURE 6. Flatness factor of band-pass signal as a function of the mid-band frequency fm 

for a fixed relative bandwidth Aflf,. = 0.24. Re8 = 35500. ?I+:  0, 5.01; A, 21.0; v, 332. 
0, Kuo & Corrsin (1971) for grid-produced turbulence a t  Re, = 110 and 86.5 with 
Aflf, = 0.52. 
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FIGURE 7. Distributions of skewness factors of u, au/at and a2.iL/at2. 
Rea: A, V, 11450; 0. 35500. - * -, Zarid. (1972); - .. -, Kreplin (1973). 

The flatness factor of band-pass signals with fixed relative bandwidth was 
measured and is shown in figure 6 as a function of mid-band frequency. 

3.4. Skewness factor 
The skewness factor is defined as 

Since the skewness factor is an  odd-order moment of the probability density, 
i t  is an indication of the degree of asymmetry of P ( e ) .  

The effect of a high cut-off frequency on the skewness factors of u, &/at and 
a2u/at2 is not so large as its effect on flatness factors. But in order to  be consistent 
the Kolmogorov frequency has been set as the high cut-off frequency for all the 
data. Measured distributions of the skewness factors of u, au/at and a2u/at2 we 
shown in figure 7. 

3.5. Spectra of non-negative random variables 

The spectra of (au/at)2 and (Su/i?t2)2 are of special interest when studying the 
fine structure of turbulence. On the assumption of Taylor’s hypothesis the 
probability distribution of ( and consequently that of the dissipation E 

may be expected t o  be the same as that of (au/at)Z. According to  Yaglom the 
variance of (au/at)2 is given by (1) and its spectral distribution by (2). The spectra 
of (i?u/at)2 and (82u/i3t2)2 measured at Re, = 35500 are shown in figures 8 and 9, 
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FIGURE 8. Change with y+ of normalized spectral distribution E66 for qh = 
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FIGURE 9. Comparison of normalized spectral distributions E6# for qh = ( a ~ / a t ) ~  (open 
symbols) and for q5 =   at^)^ (filled symbols). Re8 = 35500. y+: U ,  5.00; v, 21.0; 
A, 334. 

with y+ as a parameter. Note the increase of the frequency range with increasing 
distance from the wall. Figure 10 shows these spectra measured a t  three different 
Reynolds numbers and a t  two distances from t,he wall. For comparison one- 
dimensional spectra of u also measured a t  Re, = 35 500 are shown in figure 11. 
At yf = 334 (Re, 21 150) a Kolmogorov inertial subrange is noticeable, while in 
the viscous sublayer the spectra clearly show a - 1  power law in the lower 
frequency range. When comparing figure 11 with figures 8-10, note the more 
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FIGURE 10. Comparison of normalized spectral distributions E4& for 9 = obtained 
a t  different Reynolds numbers. Rea: A, 11450; 0, 35500; V, 49200. Open symbols, 
y/S = 0.25; filled symbols, yf = 5.0. 

extended frequency range for the spectra of (au/at)2 and (a2u/at2j2. The spectral 
distributions E4$, where #J = u, and (82u/at2)2 respectively, have been 
plotted in the following normalized and non-dimensional form: 

4. Discussion 
When considering in $3.2 the results shown in figure 4, we mentioned possible 

errors made in calculating the dissipation E by assuming the isotropic relation 
(5) also to be applicable in the buffer region and viscous sublayer. Actually the 
dissipation may be expected to be greater there, and consequently the values of 
A:, Re, and q+ calculated with the relation (5) are too high. Since 7 cc E-k, the 
error in the determination of q may be less serious, though. From measurements 
of four out of the nine derivations occurring in (4), Laufer obtained E V / U * ~  as 
a function of y+. It showed a maximum equal to roughly 0.27 at y+ = 8. For 
smaller values of y+ the variation of:vlu*4 with y+ was practically linear according 
to 

With this relation we obtain 
E v / u * ~  = 0.1 + 0*03y+. 

q+ = (0.1 + 0*03y+)-%, 

(9) 

( 10) 

with alimiting value of 7+ = 1-78 when y+ -+ 0. This value for y+ agrees reasonably 
with the value obtained from 
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FIGURE 11. Normalized spectral distribution E44 for 9 = u. Re8 = 35 500. 

From experiments by Eckelmann (1970) one concludes that u'/u* z 0*25y+ for 
y++O. Since experimental evidence has shown that u'/w' N 3 for y++O, a 
limiting value of 1.95 is obtained for q+. These two estimated values of q+ are 
smaller than would be obtained from extrapolation of the experimental results 
shown in figure 4. 

If one still defined A, by ( 5 ) ,  with (9) one would obtain 

U' u,*4 8 
+ - -  15: - u* ( ,J = 2 (0.1 +0.03y+ 
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and consequently U'2 15 4 
Re, = p (0.1 + ,.o,,+) * 

With u'/u* 21 0.25yf we then obtain for small yf the relations A,' N 3-lyf and 
Re, 21 0*75y+, which clearly yield much smaller values of A,' and Re, than would 
be obtained from figure 4. 

The flatness and the skewness factors of u, &/at and a2u/at2 determined at the 
two Reynolds numbers and shown in figures 5 and 7 fall roughly on a single 
curve, thus pointing to the existence of Reynolds number similarity. 

Frenkiel & Klebanoff (1967) and Van Atta & Chen (1968) measured the flatness 
and skewness factors of the u signal using a digital method. They discussed the 
nonlinearity effect of the hot-wire response and the low frequency cut-off effect, 
and found that these effects are serious in the case of the odd-order moments 
of u. Van Atta & Chen then showed that if these effects are taken into account 
the values of the flatness and the skewness factor in grid-produced turbulence 
are three and zero respectively, within the experimental accuracy. If we too 
take into account the possible errors due to these effects and also due to the 
analog method used here, we may expect from the figures 5 and 7 that the 
flatness and skewness factors of u may be regarded as having the values three 
and zero in the outer part of the wall region, y+ > 100. Thus in this part the u 
fluctuation has a normal probability distribution. In the regidn y+ < 15, the 
skewness factor becomes positive and increases with decreasing yf. At approxi- 
mately yf = 15 the flatness factor of u has a minimum, while the skewness factor 
becomes zero. This location agrees with that where zc'/u* reaches a maximum 
(figure 3) and where, according to experimental evidence, the highest turbulence 
production occurs. The agreement of these results with those obtained by 
Kreplin (1973) and by Zarid (1972), which were obtained with the digital method, 
is satisfactory. This gives strong support to the reliability of the analog method 
used here. 

For the digital data for the &/at signal obtained in grid-produced turbulence 
Frenkiel & Klebanoff (1971) estimated the nonlinear effect on moments of this 
signal up to the sixth order, and found it to be negligible. Therefore, although 
the relative intensity of the turbulence is large in the wall region, this effect, 
as well as the low frequency cut-off effect, is not expected to be very significant 
for the data for the first arid second velocity derivative obtained here. 

As shown in figure 7, the skewness factor of &/at is also not zero, but has a 
large positive value with a flat maximum a t  roughly y+ = 20. The absolute 
value of the skewness factor of a2u/at2 is smaller by two orders of magnitude than 
that of aulat, and may be regarded as zero. This is in agreement with results 
obtained by Stewart & Townsend (1951) in a grid-produced turbulence and by 
Wyngaard & Tennekes (1970) in a curved mixing layer. In figure 7 the skewness 
factors of u, - aujat (or &/ax) and a2u/at2 (or a2uj8x2) all decrease with increasing 
yf and have a minimum in the buffer region. After rising again they gradually 
approach constant values. 

The skewness and flatness factors of au/at as a function of Re, obtained in our 
investigation at y/S = 0.25 are compared in figures 12(a)  and ( b )  with those 



Fine-structure turbulence in a boundary layer 139 

10 

FIGURE 12. (a) Flatness factor P and ( b )  skewness factor S of &/at as a function of Re,. 
0, measurements at y/S = 0.25; m, Batchelor & Townsend (1949); +, Stewart & Town- 
send (1951); V,  Wyngaard & Tennekes (1970); a, Kuo & Corrsin (1971). 

obtained by BatcheIor & Townsend (1949), Stewart & Townsend (1951), Wyn- 
gaard & Tennekes (1970) and Kuo & Corrsin (1971) in unsheared flows, namely 
in grid-produced turbulence and on the axes of a turbulent jet and a turbulent 
wake. The agreement is satisfactory. 

Also our measured values of the flatness factor of a2u/at2 appear to compare 
well with Kuo & Corrsin’s results for this quantity. Consequently, it may be 
concluded that in the outer part of the wall region (y+ > 100) the flatness and 
skewness factors tend to approach those values which are obtained in shear- 
free turbulence a t  the same Re,,. 

Although Re, is almost constant in the region 20 < y+ < 100, the flatness 
factors of both &/at and a2u/at2 increase with decreasing y f .  For y f  < 20 the 
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FIGURE 14. Distribution of burst period TB of band-pass signal (fin = O+f& 
Red: A, 11450; 0, 35500. 

flatness factor of a2u/at2 continues to increase though Re, decreases there with 
decreasing y+. In  the viscous sublayer it attains a value about twice the value 
observed in the outer part of the wall region. If  we connect the value of the 
flatness factor with the intermittent inrush and ejection processes, the above 
behaviour of the flatness factor strongly suggests that these processes affect 
different regions of the flow. While the flow in the outer part is influenced by 
both the inrush and ejection events, the flow in the vicinity of the wall is affected 
mainly by the inrush event (aujat > 0). This is supported by the character of the 
oscillograms of &/at in figure 13 (a)  (plate l) ,  which shows a sequence of positive 
pulses in the innermost part of the wall region, By comparing the oscillograms of 
u and &/at, it  may be concluded that these positive pulses may be considered 
to be associated with the inrush of high momentum fluid lumps into the inner 
layer. This large influence of the inrush phase is reflected in the remarkably large 
positive value of the skewness factor of &/at. 

Rao, Narasimha & Badra Narayanan (1971) counted the burst rate of the 
high frequency band-pass signal of the u fluctuation and related it to the period 
of the inrush-ejection cycle. In their experiment, which was made in the region 
y+ > 30, bursts of high frequency components occurred twice in each cycle. 
On the average, a burst occurred once in the inrush phase and once in the ejection 
phase. In figure 13 bursts of high frequency components (mid-band frequency 
f n L  = 0.5 f,) are clearly visible. By counting these bursts in a similar way to Rao 
et al., the period of the inrush-ejection cycle was obtained. Figure 14 shows that 
the period of the inrush-ejection cycle non-dimensionalized by the outer para- 
meters Urn and 13, i.e. TBUJ13, is 4.7. It does not dependon the Reynolds number, 
which agrees well with the results of Rao et al. (1971). 
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In  the inner part of the wall region bursts due to ejection (au/at < 0)  tend to 
diminish as the wall is approached and in the viscous sublayer a burst occurs 
once in each cycle (figure 13 (a)  and figure 14). This results in a small intermit- 
tency factor and in a high flatness factor for the fine structure of the turbulence in 
that layer. One piece of evidence is clearly shown in figure 6. The distribution 
of the flatness factor of the band-pass signal vs. mid-band frequency changes as 
the distance yu*/u is increased. The flatness factor in and near the viscous sub- 
layer becomes about twice that in the outer part in the high frequency region 
when f m / f q  > 0.45. This is expected, if we may assume that inrush and ejection 
phases make the same contribution to the flatness factor in the outer part, while 
the contribution of the ejection phase diminishes in the viscous sublayer. 

The distribution of this flatness factor at y+ = 332 as a function of fm/fv is in 
good agreement with the result obtained by Kuo & Corrsin (1971) in nearly 
isotropic turbulent flow. This is another confirmation of the idea that the fine 
structure of the turbulence in the outer part is substantially the same as that in 
isotropic turbulent flow. 

The change in the mechanism of the fine structure of the turbulence with 
the distance from the wall is clearly shown by the spectra of ( &@)2 and (@zc/at2)2. 
In  the outer part the spectrum of (i3u/at)2 shows a power-law behaviour over 
more than two decades (figure 8). It covers almost the entire frequency range of 
the turbulent energy spectrum (figure 11). This is worth noting since Yaglom's 
model was derived on the assumption of a very high Reynolds number and has 
to be applied to the restricted frequency region of the inertial subrange. In  spite 
of the Yaglom assumption, the power law appears to persist in the measured 
spectra in the range from the region where the frequency is less than that of 
energy-containing eddies to that in which molecular viscosity begins to affect 
the spectrum. In the viscous sublayer a power law can again be observed clearly 
but with a different exponent. This power law applies also to a large part of the 
whole frequency range of the energy spectrum, with the exception ~f the highest 
viscous frequency range. From the spectra in the buffer region we can see how 
the change in the spectrum occurs with increasing y+. In  the spectrum there are 
two distinct power-law regions (figures 8 and 9). In  the lower frequency region 
the power is the same as that for the viscous sublayer, while in the high frequency 
region it is the same as that for the outer part of the wall region. As y+ increases, 
the range of the power law for the higher frequency region increases to lower 
frequencies till it covers the whole frequency range. 

Yaglom assumed for the inertial subrange an exponent equal to ,u - 1 [see (3)] 
with a value of ,u between 0 and 1.  However, the present experiments show that 
it depends on the distance from the wall. This is not surprising since close to the 
wall the energy spectra hardly show an inertial subrange (see figure 11). The 
values of ,u obtained in the present experiments are compared with those of other 
investigators in table 2. 

With a burst period given by TBU,/6 = 4.7 one obtains for the main burst 
frequency f B  expressed in terms of the wall variables u* and u the value 
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Investigators Quantity p 

Gurvich & Zubkovski (1963) (awlat)2 0.4 y = 4 m  

0.4} y = 1m Pond & Stewart (1965) (au/at)2 
r(a~iat)”i2t 0.6 

Gurvich & Yaglom (1967) laZT/at)z 0.4 

Van Atta & Chen (1970) (au/i3t)2 0.5 y = 31m 

Wyngaard & Tennekes (1970) (au/i3t)2 

Sheih et al. (1971) (au/at)a 0.7 y = 108m 

Present authors 0.724 YU*/V = 320 

(a2u/at2)2 0.765 YU*/V = 320 

0.85 

0.500 yu*lv < 5 

0.500 yu*/v < 5 

Wind blowing over the 

Wind blowing over the 

Wind blowing over the 

Wind blowing over the 

Curved mixing-layer 

Wind blowing over the 

Turbulent boundary- 

ground 

water 

ground 

open ocean 

flow, ReA = 200 

ground 

layer flow, 
Reo = 1244 and 
4248 

7 Specially averaged value of &/at employing a special filter. 

TABLE 2. Experimental values of the coefficient p 

a t  Re, = 35500. This burst frequency is indicated in figures 8 and 9. It may be 
noted that the above power law for the viscous sublayer begins roughly at this 
frequency. 

The same phenomena may be observed in the spectra of (a2u/at2)2. Both in 
the outer layer and in the viscous sublayer the spectra decrease with frequency 
according to a power law but with different exponents (figure 9). The values of 
,u are 0.765 and 0.500 for the outer layer and for the viscous sublayer respectively, 
which compare well with values of 0.724 and 0.500 for the spectra of (au/at)*. 
When the spectra of (i?ju/at)2 and (a2u/at2)2 measured in the buffer layer 

are compared, it is noticed that the critical frequency a t  which transition occurs 
from the power law (p = 0.500) is almost the same. Therefore, the spectra of 
(au/at)2 and (a2u/at2)2 agree with each other within the experimental error at all 
distances from the wall. 

(yu*/v = 21.0) 
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FICURE 13. Oscillograrns of (I) u(t) slgoal, (11) (8u/ao3 sigrial and (111) band-pass signal. 
Mid-band frequencyf, = 0.5 f,. Bandwidth A f / f ,  = 0.24; i.e. 0.02 s/division. Re8 = 11 450. 
( a )  y’ = 5.01; ( b )  y+ = 17.0; (r) 9’ = 159. 
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